Hydrogen storage in microporous metal-organic frameworks.

نویسندگان

  • Nathaniel L Rosi
  • Juergen Eckert
  • Mohamed Eddaoudi
  • David T Vodak
  • Jaheon Kim
  • Michael O'Keeffe
  • Omar M Yaghi
چکیده

Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen storage in microporous metal-organic frameworks with exposed metal sites.

Owing to their high uptake capacity at low temperature and excellent reversibility kinetics, metal-organic frameworks have attracted considerable attention as potential solid-state hydrogen storage materials. In the last few years, researchers have also identified several strategies for increasing the affinity of these materials towards hydrogen, among which the binding of H(2) to unsaturated m...

متن کامل

Hydrogen storage in metal–organic frameworksw

New materials capable of storing hydrogen at high gravimetric and volumetric densities are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other mobile applications. With exceptionally high surface areas and chemically-tunable structures, microporous metal–organic frameworks have recently emerged as some of the most promising candidate mater...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

Synthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature

Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...

متن کامل

Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties.

The potential of tetrazolate-based ligands for forming metal-organic frameworks of utility in hydrogen storage is demonstrated with the use of 1,4-benzeneditetrazolate (BDT(2)(-)) to generate a series of robust, microporous materials. Reaction of H(2)BDT with MnCl(2).4H(2)O and Mn(NO(3))(2).4H(2)O in N,N-diethylformamide (DEF) produces the two-dimensional framework solids Mn(3)(BDT)(2)Cl(2)(DEF...

متن کامل

Microporous metal organic materials: promising candidates as sorbents for hydrogen storage.

Advancement in hydrogen storage techniques represents one of the most important areas of today's materials research. While extensive efforts have been made to the existing techniques, there is no viable storage technology capable of meeting the DOE cost and performance targets at the present time. New materials with significantly improved hydrogen adsorption capability are needed. Microporous m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 300 5622  شماره 

صفحات  -

تاریخ انتشار 2003